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ABSTRACT
In this work, we explore the potential to make embeddings, which
are becoming an integral part of machine-learning pipelines, share-
able with the general public while providing self-contained access
control. To this end, we apply attribute-based encryption and dis-
cuss a potential application for supply chain management.
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1 INTRODUCTION
Embeddings, for example graph embeddings, are nowadays com-
monly used to transform more complex structures into a suitable
input for machine-learning algorithms [4]. However, obtaining em-
beddings may take hours for large inputs [4] and they, thus, are
not suitable for on-the-fly generation. In this work, we outline our
considerations for making embeddings shareable, such that they
can be periodically generated and released to the public. To provide
self-contained access control over an embedding’s data, we seek
to apply attribute-based encryption. In the context of our funded
research project CRYPTO4GRAPH-AI, we explore the potential ap-
plicability of this scheme to distribute insights about supply chains.

2 BACKGROUND
In the following, we give a brief overview of embeddings in the con-
text of machine learning (ML) and attribute-based encryption (ABE).

Embeddings. In ML, an embedding E generally maps an in-
put from a considered object space S to a 𝑑-dimensional vector
𝑥 ∈ R𝑑 , which is then subsequently used as input for further ML
algorithms [4]. For instance, this approach allows applying estab-
lished methods for ML-based similarity assessment between objects
if E sufficiently captures this similarity, i.e., the vectors correspond-
ing to “similar” objects have a small distance from each other [3].
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In this work, we focus on graph embeddings, which take a graph
𝐺 = (𝑉 , 𝐸) and target dimensionality 𝑑 as input and can return
(depending on the application) a set of 𝑑-dimensional vectors, e.g.,
one vector per node 𝑣 ∈ 𝑉 or one vector per edge 𝑒 ∈ 𝐸 [4].

Attributed-based Encryption.With ciphertext-policy attribute-
based encryption (CP-ABE) [2], a user can encrypt a with inherent
access control over a set of preassigned attributes. To this end, a
central manager distributes secret keys to the users based on their
attributes. When receiving an ABE-encrypted message, the user
can only decrypt it if their attributes match the specified policy.

3 PROTECTION PIPELINE
We now present our ABE-based protection pipeline for shareable
ML embeddings. Figure 1 gives an overview of this pipeline.

We assume that a knowledge owner has control over a large
knowledge base containing sensitive information. Nevertheless, the
knowledge owner wants to (or obliged to) share insights with a
larger audience in the form of ML embeddings for further process-
ing by the recipients. However, not all recipients are entitled to a
full view of these insights, which we assume to be computationally
taxing for the knowledge owner to derive. For example, obtaining
higher-dimension graph embeddings for huge input graphs eas-
ily takes hours even after optimization [4]. Hence, the knowledge
owner wants to compute the embedding once and protect its com-
ponents against unauthorized access before publishing it. In the
following, we detail the steps of our pipeline, i.e., obtaining and
protecting an embedding before publicly releasing it.

1○ Obtain Embedding. We assume that the confidential model
of the knowledge owner consists of a large graph 𝐺 = (𝑉 , 𝐸) with
possible node and edge labels. For example, the labeled graph can
constitute a knowledge graph [6]. The knowledge owner occasion-
ally runs a graph embedding algorithm such as node2vec [3] on
relevant subgraphs of𝐺 , or𝐺 may evolve over time. In the example
of node2vec, the embedding consists of a set of vectors 𝑥𝑖 ∈ R𝑑
for each node 𝑣𝑖 ∈ 𝑉 . Additionally, the knowledge owner may
augment this vector with an additional data component 𝐷𝑖 to selec-
tively annotate individual embedding points. For a two-dimensional
embedding (as shown in Figure 1), the embedding yields a mapping
𝑣𝑖 ↦→ (𝑥𝑖 , 𝑦𝑖 , 𝐷𝑖 ) for each node 𝑣𝑖 .

2○ Protect Embedding. The knowledge owner protects the
generated embedding such that they can subsequently release it to
the public, and each recipient may only process the subset of the
embedding they are entitled to. To this end, the knowledge owner
uses CP-ABE (cf. Section 2) as follows. First, the knowledge owner
has to define the relevant attributes and assign them to the users.
Afterward, they can define the access policies in a fine-granular
manner. Namely, each component as well as the preimage of an
embedding vector may be subject to a specific policy. By defining
attributes on a per-embedding basis, the knowledge owner gains
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Figure 1: Our pipeline consists of 1○ obtaining the ML embedding, 2○ protecting it using CP-ABE, and then 3○ releasing it.
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Figure 2: Embedding data obtainable for different policies.

the flexibility to reuse partial insights from the embedding to define
the policies. Figure 2 gives two examples of the access restrictions
the knowledge owner can make. In the first example (Figure 2a),
access is based on the Euclidean distance between vectors of the
embedding. Here, the recipient is allowed to explore the proximity
of Node 5 in the embedding, yielding full access to the embedding
data corresponding to Nodes 2, 3, and 5. In the second example
(Figure 2b), the recipient may only inspect a lower-dimension pro-
jection of the embedding (only the 𝑥-coordinates) and is not allowed
to access any data components. However, now the recipient may
see all preimages of this low-dimensional representation.

3○ Release Embedding. After protecting the embedding, the
knowledge owner can release it to the public. However, if they
generated attributes or attribute assignments on the fly, the knowl-
edge owner additionally has to distribute the corresponding keying
material. For simplicity reasons, each potential recipient can ini-
tially register with the knowledge owner and announce a public
key during this process. Then, the knowledge owner can encrypt
each recipient’s key with their respective public key and attach
those values to the protected embedding. Hence, the embedding is
self-contained and, once distributed, can be applied by any eligible
recipient even if the knowledge owner goes offline.

4 CASE STUDY: SUPPLY CHAIN KNOWLEDGE
In the context of our funded research project CRYPTO4GRAPH-AI,
we are eager to refine and apply the approach described in Section 3
to a use case from the domain of supply chain management.

Typically, supply chains are organizedwith a certain degree of de-
centralization, i.e., individual links are not necessarily aware of the
whole supply chain [1]. Furthermore, organizations are expected to
increasingly exchange information across the boundaries of individ-
ual supply chains in the future [5]. This development paves the way
for dedicated knowledge providers to assist this exchange. However,
an over-reliance on a central entity in an otherwise decentralized

ecosystem should be avoided. Hence, we are interested in exploring
our protection pipeline for ML embeddings in this context.

Scenario. In addition to the central knowledge provider, we
assume that the participants are predominantly the organizations
making up the covered supply chains. The knowledge provider
maintains an expressive knowledge graph describing this federation
of supply chains, but (for now) we assume that the nodes of the
obtained ML embeddings correspond to the covered organizations.

Knowledge Benefits. Having access to ML embeddings enables
the organizations to identify similarities in private. Hence, they
can either compare themselves to other clusters of organizations
of interest or identify other organizations similar to the ones they
are already monitoring. Such comparisons can help improve, e.g.,
performance, sustainability, or public visibility. Contrarily, orga-
nizations may identify new potential suppliers to increase their
flexibility, or identify risk-ridden organizations to avoid them, e.g.,
if they turn out to be likely to engage in unethical work practices.

Policy Considerations. Yet, organizations should be protected,
as the embedding may otherwise leak sensitive information. To
respect this need, the knowledge provider may distribute attributes
based on relationships between the organizations, e.g., whether
they are direct competitors or have a direct supplier relationship.

5 CONCLUSION
In this work, we have outlined the potential for creating shareable
machine-learning embeddings by protecting them via attribute-
based encryption prior to release. We are eager to further explore
this concept in our funded project CRYPTO4GRAPH-AI.
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